Opioid-Induced Mitogen-Activated Protein Kinase Signaling in Rat Enteric Neurons following Chronic Morphine Treatment

نویسندگان

  • Celine Duraffourd
  • Erica Kumala
  • Laura Anselmi
  • Nicholas C. Brecha
  • Catia Sternini
  • Wenhui Hu
چکیده

Opioids, acting at μ opioid receptors, are commonly used for pain management. Chronic opioid treatment induces cellular adaptations, which trigger long-term side effects, including constipation mediated by enteric neurons. We tested the hypothesis that chronic opioid treatment induces alterations of μ opioid receptor signaling in enteric neurons, which are likely to serve as mechanisms underlying opioid-induced constipation. In cultured rat enteric neurons, either untreated (naïve) or exposed to morphine for 4 days (chronic), we compared the effect of morphine and DAMGO (D-Ala2,MePhe4,Gly-ol5 enkephalin) on μ opioid receptor internalization and downstream signaling by examining the activation of the mitogen-activated protein kinase/extracellular signal-regulated kinases 1 and 2 (MAPK/ERK) pathway, cAMP accumulation and transcription factor cAMP Response Element-Binding protein (CREB) expression. μ opioid receptor internalization and MAPK/ERK phosphorylation were induced by DAMGO, but not morphine in naïve neurons, and by both opioids in chronic neurons. MAPK/ERK activation was prevented by the receptor antagonist naloxone, by blocking receptor trafficking with hypertonic sucrose, dynamin inhibitor, or neuronal transfection with mutated dynamin, and by MAPK inhibitor. Morphine and DAMGO inhibited cAMP in naïve and chronic enteric neurons, and induced desensitization of cAMP signaling. Chronic morphine treatment suppressed desensitization of cAMP and MAPK signaling, increased CREB phosphorylation through a MAPK/ERK pathway and induced delays of gastrointestinal transit, which was prevented by MAPK/ERK blockade. This study showed that opioids induce endocytosis- and dynamin-dependent MAPK/ERK activation in enteric neurons and that chronic morphine treatment triggers changes at the receptor level and downstream signaling resulting in MAPK/ERK-dependent CREB activation. Blockade of this signaling pathway prevents the development of gastrointestinal motility impairment induced by chronic morphine treatment. These findings suggest that alterations in μ opioid receptor downstream signaling including MAPK/ERK pathway in enteric neurons chronically treated with morphine contribute to the development of opioid-induced constipation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ginger Extract Reduces Chronic Morphine-Induced Neuroinflammation and Glial Activation in Nucleus Accumbens of Rats

Background: Chronic usage of morphine elicits the production of inflammatory factors by glial cells andinduces neuroinflammation. Ginger (Zingiber Officinale Roscoe) is a medicinal herb that has antiinflammatory properties. It has been reported that ginger shows anti-addictive effects against chronic usageof morphine; however, its influence o...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Morphine regulates dopaminergic neuron differentiation via miR-133b.

Morphine is one of the analgesics used most to treat chronic pain, although its long-term administration produces tolerance and dependence through neuronal plasticity. The ability of morphine to regulate neuron differentiation in vivo has been reported. However, the detailed mechanisms have not yet been elucidated because of the inability to separate maternal influences from embryonic events. U...

متن کامل

Modulation of μ-opioid receptor signaling by RGS19 in SH-SY5Y cells.

Regulator of G-protein signaling protein 19 (RGS19), also known as Gα-interacting protein (GAIP), acts as a GTPase accelerating protein for Gαz as well as Gαi/o subunits. Interactions with GAIP-interacting protein N-terminus and GAIP-interacting protein C-terminus (GIPC) link RGS19 to a variety of intracellular proteins. Here we show that RGS19 is abundantly expressed in human neuroblastoma SH-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014